
1 
 

Physics 371 Spring 2017 Prof. Anlage 
Review 

 
Special Relativity  

Inertial vs. non-inertial reference frames 
Galilean relativity: Galilean transformation for relative motion along the 𝑥𝑥 − 𝑥𝑥′ direction: 

𝑥𝑥 = 𝑉𝑉𝑉𝑉 + 𝑥𝑥′     and the inverse transformation: 𝑥𝑥′ = 𝑥𝑥 − 𝑉𝑉𝑉𝑉 
𝑦𝑦 = 𝑦𝑦′       𝑦𝑦′ = 𝑦𝑦 
𝑧𝑧 = 𝑧𝑧′       𝑧𝑧′ = 𝑧𝑧 
𝑉𝑉 = 𝑉𝑉′       𝑉𝑉′ = 𝑉𝑉 

�⃗�𝑣′ = �⃗�𝑣 − 𝑉𝑉�⃗ .  
Michelson-Morley experiment – no evidence for an ether that acted as the medium for the 
propagation of light. 
Einstein’s postulates: 

1) If S is an inertial reference frame and if a second frame S’ moves with 
constant velocity relative to S, then S’ is also an inertial reference frame. 

2) The speed of light (in vacuum) has the same value c in every direction in all 
inertial reference frames. 

Time dilation: ∆𝑉𝑉 = 𝛾𝛾∆𝑉𝑉′, where 𝛾𝛾 = 1/�1 − 𝛽𝛽2, and 𝛽𝛽 = 𝑉𝑉/𝑐𝑐.  
Length contraction: ℓ = ℓ0/𝛾𝛾, where ℓ0 is the ‘proper length’ of an object.   
Lorentz transformation for relative motion along the 𝑥𝑥 − 𝑥𝑥′ direction: 𝑥𝑥′ = 𝛾𝛾(𝑥𝑥 − 𝑉𝑉𝑉𝑉), 
𝑦𝑦′ = 𝑦𝑦, 𝑧𝑧′ = 𝑧𝑧, 𝑉𝑉′ = 𝛾𝛾(𝑉𝑉 − 𝑥𝑥𝑉𝑉/𝑐𝑐2), and the inverse transformation: 𝑥𝑥 = 𝛾𝛾(𝑥𝑥′ + 𝑉𝑉𝑉𝑉′), 
𝑦𝑦 = 𝑦𝑦′, 𝑧𝑧 = 𝑧𝑧′, 𝑉𝑉 = 𝛾𝛾(𝑉𝑉′ + 𝑥𝑥′𝑉𝑉/𝑐𝑐2). 
Spacetime Four-vectors 

𝑥𝑥(4) = �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�, 𝑥𝑥(4) = (�⃗�𝑥, 𝑐𝑐𝑉𝑉),  

The Lorentz transformation as a rotation in 4-dimensional spacetime: 

𝑥𝑥′(4) = Λ� 𝑥𝑥(4), Λ� = �

𝛾𝛾 0
0 1

0 −𝛽𝛽𝛾𝛾
0 0

0 0
−𝛽𝛽𝛾𝛾 0

1 0
0 𝛾𝛾

� 

Invariant length of a four-vector: 𝑠𝑠 ≡ 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 − 𝑥𝑥42,  
𝑥𝑥(4) ∙ 𝑦𝑦(4) ≡ 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥2𝑦𝑦2 + 𝑥𝑥3𝑦𝑦3 − 𝑥𝑥4𝑦𝑦4 

Relativistic velocity transformation: 
𝑣𝑣𝑥𝑥′ = 𝑣𝑣𝑥𝑥−𝑉𝑉

1−𝑉𝑉𝑣𝑣𝑥𝑥/𝑐𝑐2
, 𝑣𝑣𝑦𝑦′ = 𝑣𝑣𝑦𝑦

𝛾𝛾(1−𝑉𝑉𝑣𝑣𝑥𝑥/𝑐𝑐2), 𝑣𝑣𝑧𝑧
′ = 𝑣𝑣𝑧𝑧

𝛾𝛾(1−𝑉𝑉𝑣𝑣𝑥𝑥/𝑐𝑐2), and the inverse: 𝑣𝑣𝑥𝑥 = 𝑣𝑣𝑥𝑥′+𝑉𝑉
1+𝑉𝑉𝑣𝑣𝑥𝑥′/𝑐𝑐2

, 

𝑣𝑣𝑦𝑦 =  𝑣𝑣𝑦𝑦′

𝛾𝛾�1+𝑉𝑉𝑣𝑣𝑥𝑥′/𝑐𝑐2�
, 𝑣𝑣𝑧𝑧 =  𝑣𝑣𝑧𝑧′

𝛾𝛾�1+𝑉𝑉𝑣𝑣𝑥𝑥′/𝑐𝑐2�
 

The Relativistic Doppler effect 

 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐ℎ = 𝑓𝑓0�
1+𝛽𝛽
1−𝛽𝛽

,  𝑓𝑓𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑓𝑓0�
1−𝛽𝛽
1+𝛽𝛽

. 

The light cone; absolute future and absolute past. 
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Velocity four-vector: 𝑢𝑢(4) = 𝑅𝑅𝑥𝑥(4)

𝑅𝑅𝑡𝑡0
= 𝛾𝛾(𝑢𝑢)(𝑢𝑢�⃗ , 𝑐𝑐),  

Relativistic momentum: 𝑝𝑝(4) = 𝑚𝑚𝛾𝛾(𝑢𝑢)(𝑢𝑢�⃗ , 𝑐𝑐) = (𝑚𝑚𝛾𝛾(𝑢𝑢)𝑢𝑢�⃗ ,𝐸𝐸/𝑐𝑐),  
Relativistic energy: 𝐸𝐸 = 𝛾𝛾(𝑢𝑢)𝑚𝑚𝑐𝑐2, Three-momentum: 𝑝𝑝 = 𝑚𝑚𝛾𝛾(𝑢𝑢)𝑢𝑢�⃗ ,  
Kinetic energy: 𝑇𝑇 ≡ 𝐸𝐸 −𝑚𝑚𝑐𝑐2 = (𝛾𝛾(𝑢𝑢) − 1)𝑚𝑚𝑐𝑐2, 
 𝛽𝛽 = 𝑢𝑢��⃗

𝑐𝑐
= �⃗�𝑝𝑐𝑐/𝐸𝐸 , 𝑢𝑢�⃗ = �⃗�𝐴

𝛾𝛾(𝑢𝑢)𝑚𝑚
= �⃗�𝑝𝑐𝑐2/𝐸𝐸. 

The useful relation: 𝑝𝑝(4) ∙ 𝑝𝑝(4) = −(𝑚𝑚𝑐𝑐)2, 𝐸𝐸2 = (�⃗�𝑝𝑐𝑐)2 + (𝑚𝑚𝑐𝑐2)2, 

Relativistic four-momentum:  𝑝𝑝(4) = �

𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
𝐸𝐸/𝑐𝑐

� , 

Lorentz transformation of four-momentum: 𝑝𝑝′(4) = Λ� 𝑝𝑝(4) 
Photon: 𝐸𝐸 = 𝑝𝑝𝑐𝑐 = ℏ𝜔𝜔, 𝜔𝜔 = 𝑘𝑘𝑐𝑐,  𝑝𝑝 = ℏ𝜔𝜔

𝑐𝑐
= ℏ𝑘𝑘, 𝑝𝑝𝛾𝛾

(4) = ℏ �𝑘𝑘�⃗ ,𝜔𝜔
𝑐𝑐
� = ℏ𝜔𝜔

𝑐𝑐
(𝑘𝑘� , 1), 𝑝𝑝𝛾𝛾

(4) ∙ 𝑝𝑝𝛾𝛾
(4) =

0,  
Compton scattering: 𝜆𝜆 − 𝜆𝜆0 = ℎ

𝑚𝑚𝑐𝑐
(1 − cos 𝜃𝜃), 𝜆𝜆𝐶𝐶 = ℎ𝑐𝑐

𝑚𝑚𝑐𝑐2
= 2.43 𝑝𝑝𝑚𝑚 (for electron 

scattering) 

Relativistic four-force: 𝐾𝐾(4) = 𝑅𝑅𝐴𝐴(4)

𝑅𝑅𝑡𝑡0
= 𝛾𝛾 �𝑅𝑅�⃗�𝐴

𝑅𝑅𝑡𝑡
, 1
𝑐𝑐
𝑅𝑅𝑑𝑑
𝑅𝑅𝑡𝑡
� = 𝛾𝛾 ��⃗�𝐹, 1

𝑐𝑐
𝑢𝑢�⃗ ∙ �⃗�𝐹�  

 
Thermodynamics   

Thermodynamic variables.  Extensive vs. Intensive quantities 
Thermodynamic functions of state (P, V, T, U, S, thermodynamic potentials) have exact 
differentials 
An equation of state relates thermodynamic functions of state 
Ideal gas: 𝑃𝑃𝑉𝑉 = 𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇, where 𝑘𝑘𝐵𝐵 = 1.38 × 10−23𝐽𝐽/𝐾𝐾 is Boltzmann’s constant.  𝑈𝑈 =
3
2
𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇.   

Heat is thermal energy in transit.  Heat is not a thermodynamic state function 
Heat capacity 𝐶𝐶 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑇𝑇, specific heat 𝑐𝑐 = 𝐶𝐶/𝑀𝑀.  𝐶𝐶𝑉𝑉 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑇𝑇|𝑉𝑉, 𝐶𝐶𝑃𝑃 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑇𝑇|𝑃𝑃,   
𝐶𝐶𝑃𝑃
𝐶𝐶𝑉𝑉

= 𝛾𝛾 the adiabatic index.   
Heat and work are not thermodynamic state functions.   
Inexact differentials ð𝑊𝑊 = −𝑃𝑃𝑑𝑑𝑉𝑉, ð𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑇𝑇.   
Work done on a gas ð𝑊𝑊 = −𝑃𝑃𝑑𝑑𝑉𝑉.   
Zeroth Law of Thermodynamics – Thermal equilibrium 
First law of thermodynamics ∆𝑈𝑈 = ∆𝑊𝑊 + ∆𝑑𝑑, or 𝑑𝑑𝑈𝑈 = ð𝑊𝑊 + ð𝑑𝑑.   
Reversible vs. irreversible processes 
Isothermal, adiabatic, isochoric, isobaric processes 
Heat engine: A machine that produces work from a temperature difference between two 
reservoirs 
Carnot cycle (isothermal and adiabatic processes) 
Carnot efficiency: 𝜂𝜂𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝑡𝑡 = 𝑊𝑊

𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻
= 1 − 𝑇𝑇𝐶𝐶𝐻𝐻𝐶𝐶𝐶𝐶

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻
.   

Carnot cycle: 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻
𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻

= |𝑄𝑄𝐶𝐶𝐻𝐻𝐶𝐶𝐶𝐶|
𝑇𝑇𝐶𝐶𝐻𝐻𝐶𝐶𝐶𝐶

, and ∮ ð𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

= 0, leading to 𝑑𝑑𝑇𝑇 = ð𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

.  2nd Law of 
Thermodynamics: ∆𝑇𝑇𝑈𝑈𝐶𝐶𝑈𝑈𝑣𝑣𝑅𝑅𝐴𝐴𝑈𝑈𝑅𝑅 ≥ 0.  
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Kelvin statement of the 2nd law: No process is possible whose sole result is the complete 
conversion of heat into work. 
Clausius statement of the 2nd law: No process is possible whose sole result is the transfer 
of heat from a colder to a hotter system. 
Otto cycle – internal combustion engine 
Refrigerator 
 
Re-statement of the 1st-law: 𝑑𝑑𝑈𝑈 = 𝑇𝑇𝑑𝑑𝑇𝑇 − 𝑃𝑃𝑑𝑑𝑉𝑉.   
Thermodynamic potentials: Enthalpy: 𝐻𝐻 = 𝑈𝑈 + 𝑃𝑃𝑉𝑉; 𝑑𝑑𝐻𝐻 = 𝑇𝑇𝑑𝑑𝑇𝑇 + 𝑉𝑉𝑑𝑑𝑃𝑃.  Helmholtz 
Function: 𝐹𝐹 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇; 𝑑𝑑𝐹𝐹 = −𝑝𝑝𝑑𝑑𝑉𝑉 − 𝑇𝑇𝑑𝑑𝑇𝑇.  Gibbs Function: 𝐺𝐺 = 𝑈𝑈 + 𝑃𝑃𝑉𝑉 − 𝑇𝑇𝑇𝑇; 
𝑑𝑑𝐺𝐺 = −𝑇𝑇𝑑𝑑𝑇𝑇 + 𝑉𝑉𝑑𝑑𝑃𝑃.   

 
Constraints Minimized Potential 
Fixed V, T Helmholtz Function 𝐹𝐹 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 
Thermally isolated, Fixed V Entropy 𝑇𝑇 
Fixed T, P Gibbs Function 𝐺𝐺 = 𝑈𝑈 + 𝑃𝑃𝑉𝑉 − 𝑇𝑇𝑇𝑇 
Thermally isolated, fixed P Enthalpy 𝐻𝐻 = 𝑈𝑈 + 𝑃𝑃𝑉𝑉 

 
Phase transitions: Latent Heat: 𝐿𝐿 = 𝑇𝑇𝑏𝑏𝐴𝐴𝑈𝑈𝑏𝑏�𝑇𝑇𝑈𝑈𝑡𝑡𝑅𝑅𝐴𝐴𝑚𝑚 − 𝑇𝑇𝑏𝑏𝑈𝑈𝑙𝑙𝑢𝑢𝑈𝑈𝑅𝑅�.  The order of a phase 
transition is the order of the lowest differential of 𝐺𝐺 that shows a discontinuity at 𝑇𝑇𝑐𝑐 
van der Waals equation of state: [𝑃𝑃 + (𝑁𝑁2/𝑉𝑉2)𝑎𝑎][𝑉𝑉 − 𝑁𝑁𝑁𝑁] = 𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇. Accounts for 
excluded volume and attractive forces between molecules. 𝑃𝑃𝑐𝑐 = 𝐴𝐴

27𝑏𝑏2
; 𝑉𝑉𝑐𝑐 = 3𝑁𝑁𝑁𝑁; 𝑇𝑇𝑐𝑐 =

8𝐴𝐴
27𝑏𝑏

, so �𝑃𝑃
𝑃𝑃𝑐𝑐

+ 3 �𝑉𝑉𝑐𝑐
𝑉𝑉
�
2
� �𝑉𝑉

𝑉𝑉𝑐𝑐
− 1

2
� = 8

3
𝑇𝑇
𝑇𝑇𝑐𝑐

, the “law of corresponding states” 

Isothermal compressibility 𝜅𝜅𝑇𝑇 ≡ − 1
𝑉𝑉
𝜕𝜕𝑉𝑉
𝜕𝜕𝑃𝑃

|𝑇𝑇.    𝜕𝜕𝑉𝑉
𝜕𝜕𝑃𝑃

|𝑇𝑇 = 1
𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉|𝑇𝑇

.  Maxwell construction to 

define the vapor/liquid co-existence region: 𝐺𝐺𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐺𝐺𝑏𝑏𝑈𝑈𝑙𝑙𝑢𝑢𝑈𝑈𝑅𝑅 = 0 = ∫ 𝑑𝑑𝐺𝐺𝑣𝑣𝐴𝐴𝐴𝐴
𝐿𝐿𝑈𝑈𝑙𝑙 =

∫ 𝑉𝑉𝑑𝑑𝑃𝑃𝑣𝑣𝐴𝐴𝐴𝐴
𝐿𝐿𝑈𝑈𝑙𝑙 .  

 
Quantum Physics   

JJ Thomson charge-to-mass measurement in E, B fields: 𝑞𝑞/𝑚𝑚 = 𝑣𝑣
𝑅𝑅𝐵𝐵

.  Millikan oil droplet 
experiment: revealed the quantization of electric charge. 
Blackbody radiation, Stefan-Boltzmann law: 𝑅𝑅𝑇𝑇𝐴𝐴𝑡𝑡𝐴𝐴𝑏𝑏 = 𝜎𝜎𝑇𝑇4, 𝜎𝜎 = 5.6703 × 10−8 𝑊𝑊

𝑚𝑚2𝐾𝐾4
.  

Wien displacement law says that 𝜆𝜆𝑚𝑚𝐴𝐴𝑥𝑥𝑇𝑇 = 2.898 × 10−3𝑚𝑚 − 𝐾𝐾.   
Radiation power per unit area related to the energy density of a blackbody: 𝑅𝑅(𝜆𝜆) =
𝑐𝑐
4
𝜌𝜌(𝜆𝜆).   

Rayleigh-Jeans (classical equipartition argument) law 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇/𝜆𝜆4 leads to the 
‘ultraviolet catastrophe’.   
Planck blackbody radiation (treat the atoms as having discrete energy states, and the light 
as having energy 𝐸𝐸 = ℎ𝑓𝑓): 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋ℎ𝑐𝑐/𝜆𝜆5

𝑅𝑅ℎ𝑐𝑐/𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇−1
, ℎ = 6.626 × 10−34𝐽𝐽 − 𝑠𝑠.  

Photoelectric effect and the concept of light as a particle (photon with 𝐸𝐸 = ℎ𝑓𝑓): ℎ𝑓𝑓 =
𝑒𝑒𝑉𝑉0 + 𝜙𝜙.  Photon collides with one electron and transfers all of its energy, −𝑉𝑉0 is the 
stopping potential. 
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X-ray production by Bremsstrahlung with cutoff 𝜆𝜆𝑚𝑚𝑈𝑈𝐶𝐶 = 1240
𝑉𝑉

 𝑛𝑛𝑚𝑚 (Duane-Hunt Rule), 

explained by Einstein as inverse photoemission with 𝜆𝜆𝑚𝑚𝑈𝑈𝐶𝐶 = ℎ𝑐𝑐
𝑅𝑅𝑉𝑉

.  Sharp emission lines 
arise from quantized energy levels in the ‘core shells’ of atoms. 
Bragg reflection of x-rays from layers of atoms in crystals: 𝑛𝑛𝜆𝜆 = 2𝑑𝑑 sin 𝜃𝜃, where 
𝑛𝑛 = 1, 2, 3, … , 𝑑𝑑 is the spacing between the parallel layers. 
Rutherford scattering (Phys 410) suggested that positive charge is concentrated in a very 
small volume – the nuclear model of the atom. 
Empirical rule for light emission from hydrogen 1

𝜆𝜆𝑚𝑚𝑚𝑚
= 𝑅𝑅 � 1

𝑚𝑚2 −
1
𝐶𝐶2
�, Rydberg constant 

𝑅𝑅 = 𝑅𝑅𝐻𝐻 = 1.096776 × 107  1
𝑚𝑚

 for Hydrogen.   
Bohr model of the hydrogen atom (assumes stationary states, light comes from transitions 
between stationary states, electron angular momentum in circular orbits is quantized):  
�𝐿𝐿�⃗ � = |𝑟𝑟 × 𝑚𝑚�⃗�𝑣| = 𝑚𝑚𝑣𝑣𝑟𝑟 = 𝑛𝑛ℏ, with 𝑛𝑛 = 1, 2, 3, …,   Radius of circular orbits: 𝑟𝑟𝐶𝐶 = 𝐶𝐶2𝐴𝐴0

𝑍𝑍
 

with 𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑅𝑅2
= 0.529 Å,  Total energy of Hydrogen atom: 𝐸𝐸𝐶𝐶 = −𝐸𝐸0

𝑍𝑍2

𝐶𝐶2
, with 

𝐸𝐸0 = 𝑚𝑚𝑐𝑐2�𝑅𝑅2/4𝜋𝜋𝜀𝜀0�
2

 
2 (ℏ𝑐𝑐)2 = 𝑚𝑚𝑐𝑐2 

2 
𝛼𝛼2 = 13.6 𝑒𝑒𝑉𝑉, 𝛼𝛼 = 𝑅𝑅2/4𝜋𝜋𝜀𝜀0

ℏ𝑐𝑐
≅ 1

137
 is called the ‘fine structure 

constant’.  Explains the Hydrogen atom emission spectrum but not multi-electron atoms. 
Davisson-Germer experiment shows that matter (electrons) diffract from periodic 
structures (Ni atoms on a surface) like waves.  It is clear that matter has a strong wave-
like character when measured under appropriate conditions. 
deBroglie proposed the wavelength of matter waves as 𝜆𝜆𝑅𝑅𝐵𝐵 = ℎ/𝑝𝑝, where 𝑝𝑝 is the linear 
momentum.  Classical physics should be recovered in the short-𝜆𝜆𝑅𝑅𝐵𝐵 limit – the 
Correspondence Principle 
The time-dependent Schrodinger equation: − ℏ2

2𝑚𝑚
𝜕𝜕2Ψ(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝑉𝑉(𝑥𝑥, 𝑉𝑉)Ψ(𝑥𝑥, 𝑉𝑉) = 𝑖𝑖ℏ 𝜕𝜕Ψ(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

;  
Separation of variables leads to Ψ(𝑥𝑥, 𝑉𝑉) = 𝜓𝜓(𝑥𝑥)𝑒𝑒−𝑈𝑈𝑑𝑑𝑡𝑡/ℏ (a property of stationary states); 
Time-independent Schrodinger equation:  − ℏ2

2𝑚𝑚
𝑅𝑅2𝜓𝜓(𝑥𝑥)
𝑅𝑅𝑥𝑥2

+ 𝑉𝑉(𝑥𝑥) 𝜓𝜓(𝑥𝑥) = 𝐸𝐸𝜓𝜓(𝑥𝑥);  
The wavefunction Ψ(𝑥𝑥, 𝑉𝑉) is complex in general and cannot be measured.  Born 
interpretation of the wave function in terms of a probability density 𝑃𝑃(𝑥𝑥, 𝑉𝑉) =
Ψ∗(𝑥𝑥, 𝑉𝑉)Ψ(𝑥𝑥, 𝑉𝑉);   
Normalization condition: ∫ |𝜓𝜓(𝑥𝑥)|2+∞

−∞ 𝑑𝑑𝑥𝑥 = 1.   

Particle of mass 𝑚𝑚 in an infinite square well between 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿: 𝐸𝐸𝐶𝐶 = ℏ2𝑘𝑘𝑚𝑚2

2𝑚𝑚
=

𝑛𝑛2 𝜋𝜋2ℏ2

2𝑚𝑚𝐿𝐿2
 with 𝑛𝑛 = 1, 2, 3, …, and 𝜓𝜓𝐶𝐶(𝑥𝑥) = �2/𝐿𝐿  sin𝑘𝑘𝐶𝐶𝑥𝑥.   

Finite square well of height 𝑉𝑉0, energy eigenvalues are solutions of the transcendental 

equation: tan �√2𝑚𝑚𝑑𝑑
ℏ

𝑎𝑎� = �𝑉𝑉0−𝑑𝑑
𝑑𝑑

 (even parity solutions).  Always at least one solution! 

Harmonic oscillator: − ℏ2

2𝑚𝑚
𝑅𝑅2𝜓𝜓(𝑥𝑥)
𝑅𝑅𝑥𝑥2

+ 1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2𝜓𝜓(𝑥𝑥)  = 𝐸𝐸𝜓𝜓(𝑥𝑥), 𝐸𝐸𝐶𝐶 = �𝑛𝑛 + 1

2
� ℏ𝜔𝜔, where 

𝑛𝑛 = 0, 1, 2, 3, …,  Eigenfunctions: 𝜓𝜓𝐶𝐶(𝑥𝑥) = 𝐶𝐶𝐶𝐶 𝑒𝑒−𝑚𝑚𝜔𝜔2𝑥𝑥2/2ℏ 𝐻𝐻𝐶𝐶(𝑥𝑥), involve the Hermite 
polynomials multiplying a Gaussian in 𝑥𝑥.   
Classical turning points are inflection points in 𝜓𝜓(𝑥𝑥).   
General wave uncertainty properties: (∆𝑥𝑥) (∆𝑘𝑘) ≥ 1/2, (∆𝑉𝑉) (∆𝜔𝜔) ≥ 1/2.   
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Quantum uncertainty properties: (∆𝑥𝑥) (∆𝑝𝑝) ≥ ℏ/2, (∆𝑉𝑉) (∆𝐸𝐸) ≥ ℏ/2. 
Expectation values: 〈𝑥𝑥〉 = ∫ Ψ∗(𝑥𝑥, 𝑉𝑉) 𝑥𝑥 Ψ(𝑥𝑥, 𝑉𝑉)∞

−∞  𝑑𝑑𝑥𝑥 , and for any function of position: 
〈𝑓𝑓(𝑥𝑥)〉 = ∫ Ψ∗(𝑥𝑥, 𝑉𝑉) 𝑓𝑓(𝑥𝑥) Ψ(𝑥𝑥, 𝑉𝑉)∞

−∞  𝑑𝑑𝑥𝑥 

Linear momentum operator: 𝑝𝑝𝐴𝐴𝐴𝐴 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝑥𝑥

 , Hamiltonian operator: ℋ𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐻𝐻𝑜𝑜2

2𝑚𝑚
+ 𝑉𝑉(𝑥𝑥), 

the time independent Schrodinger equation written as an operator equation: ℋ𝐴𝐴𝐴𝐴ψ(𝑥𝑥) =
𝐸𝐸 ψ(𝑥𝑥). 

Step potential 𝑉𝑉(𝑥𝑥) = � 0    for  𝑥𝑥 < 0
𝑉𝑉0    for  𝑥𝑥 > 0 has reflection rate 𝑅𝑅 = �𝑘𝑘1−𝑘𝑘2

𝑘𝑘1+𝑘𝑘2
�
2
, and transmission 

rate 𝑇𝑇 = 4 𝑘𝑘1 𝑘𝑘2
(𝑘𝑘1+𝑘𝑘2)2, where 𝑘𝑘1 = √2𝑚𝑚𝐸𝐸/ℏ and 𝑘𝑘2 = �2𝑚𝑚(𝐸𝐸 − 𝑉𝑉0)/ℏ. 

Tunneling rate through a barrier 𝑇𝑇 = �1 + sinh2(𝛼𝛼𝐴𝐴)

4 𝐸𝐸𝑉𝑉0
 �1− 𝐸𝐸𝑉𝑉0

�
�
−1

≈ 16  𝑑𝑑
𝑉𝑉0

 �1 −  𝑑𝑑
𝑉𝑉0
� 𝑒𝑒−2𝛼𝛼𝐴𝐴, where 

 𝑎𝑎 is the barrier width, and  𝛼𝛼 = �2𝑚𝑚(𝑉𝑉0 − 𝐸𝐸)/ℏ. 
 
 
 


