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Physics 371 Spring 2017 Prof. Anlage 
Review 

 
Special Relativity  

Inertial vs. non-inertial reference frames 
Galilean relativity: Galilean transformation for relative motion along the 𝑥𝑥 − 𝑥𝑥′ direction: 

𝑥𝑥 = 𝑉𝑉𝑉𝑉 + 𝑥𝑥′     and the inverse transformation: 𝑥𝑥′ = 𝑥𝑥 − 𝑉𝑉𝑉𝑉 
𝑦𝑦 = 𝑦𝑦′       𝑦𝑦′ = 𝑦𝑦 
𝑧𝑧 = 𝑧𝑧′       𝑧𝑧′ = 𝑧𝑧 
𝑡𝑡 = 𝑡𝑡′       𝑡𝑡′ = 𝑡𝑡 

𝑣⃗𝑣′ = 𝑣⃗𝑣 − 𝑉𝑉�⃗ .  
Michelson-Morley experiment – no evidence for an ether that acted as the medium for the 
propagation of light. 
Einstein’s postulates: 

1) If S is an inertial reference frame and if a second frame S’ moves with 
constant velocity relative to S, then S’ is also an inertial reference frame. 

2) The speed of light (in vacuum) has the same value c in every direction in all 
inertial reference frames. 

Time dilation: ∆𝑡𝑡 = 𝛾𝛾∆𝑡𝑡′, where 𝛾𝛾 = 1/�1 − 𝛽𝛽2, and 𝛽𝛽 = 𝑉𝑉/𝑐𝑐.  
Length contraction: ℓ = ℓ0/𝛾𝛾, where ℓ0 is the ‘proper length’ of an object.   
Lorentz transformation for relative motion along the 𝑥𝑥 − 𝑥𝑥′ direction: 𝑥𝑥′ = 𝛾𝛾(𝑥𝑥 − 𝑉𝑉𝑉𝑉), 
𝑦𝑦′ = 𝑦𝑦, 𝑧𝑧′ = 𝑧𝑧, 𝑡𝑡′ = 𝛾𝛾(𝑡𝑡 − 𝑥𝑥𝑥𝑥/𝑐𝑐2), and the inverse transformation: 𝑥𝑥 = 𝛾𝛾(𝑥𝑥′ + 𝑉𝑉𝑉𝑉′), 
𝑦𝑦 = 𝑦𝑦′, 𝑧𝑧 = 𝑧𝑧′, 𝑡𝑡 = 𝛾𝛾(𝑡𝑡′ + 𝑥𝑥′𝑉𝑉/𝑐𝑐2). 
Spacetime Four-vectors 

𝑥𝑥(4) = �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�, 𝑥𝑥(4) = (𝑥⃗𝑥, 𝑐𝑐𝑐𝑐),  

The Lorentz transformation as a rotation in 4-dimensional spacetime: 

𝑥𝑥′(4) = Λ� 𝑥𝑥(4), Λ� = �

𝛾𝛾 0
0 1

0 −𝛽𝛽𝛽𝛽
0 0

0 0
−𝛽𝛽𝛽𝛽 0

1 0
0 𝛾𝛾

� 

Invariant length of a four-vector: 𝑠𝑠 ≡ 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 − 𝑥𝑥42,  
𝑥𝑥(4) ∙ 𝑦𝑦(4) ≡ 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥2𝑦𝑦2 + 𝑥𝑥3𝑦𝑦3 − 𝑥𝑥4𝑦𝑦4 

Relativistic velocity transformation: 
𝑣𝑣𝑥𝑥′ = 𝑣𝑣𝑥𝑥−𝑉𝑉

1−𝑉𝑉𝑣𝑣𝑥𝑥/𝑐𝑐2
, 𝑣𝑣𝑦𝑦′ = 𝑣𝑣𝑦𝑦

𝛾𝛾(1−𝑉𝑉𝑣𝑣𝑥𝑥/𝑐𝑐2), 𝑣𝑣𝑧𝑧
′ = 𝑣𝑣𝑧𝑧

𝛾𝛾(1−𝑉𝑉𝑣𝑣𝑥𝑥/𝑐𝑐2), and the inverse: 𝑣𝑣𝑥𝑥 = 𝑣𝑣𝑥𝑥′+𝑉𝑉
1+𝑉𝑉𝑣𝑣𝑥𝑥′/𝑐𝑐2

, 

𝑣𝑣𝑦𝑦 =  𝑣𝑣𝑦𝑦′

𝛾𝛾�1+𝑉𝑉𝑣𝑣𝑥𝑥′/𝑐𝑐2�
, 𝑣𝑣𝑧𝑧 =  𝑣𝑣𝑧𝑧′

𝛾𝛾�1+𝑉𝑉𝑣𝑣𝑥𝑥′/𝑐𝑐2�
 

The Relativistic Doppler effect 

 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ = 𝑓𝑓0�
1+𝛽𝛽
1−𝛽𝛽

,  𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑓𝑓0�
1−𝛽𝛽
1+𝛽𝛽

. 

The light cone; absolute future and absolute past. 
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Velocity four-vector: 𝑢𝑢(4) = 𝑑𝑑𝑥𝑥(4)

𝑑𝑑𝑡𝑡0
= 𝛾𝛾(𝑢𝑢)(𝑢𝑢�⃗ , 𝑐𝑐),  

Relativistic momentum: 𝑝𝑝(4) = 𝑚𝑚𝑚𝑚(𝑢𝑢)(𝑢𝑢�⃗ , 𝑐𝑐) = (𝑚𝑚𝑚𝑚(𝑢𝑢)𝑢𝑢�⃗ ,𝐸𝐸/𝑐𝑐),  
Relativistic energy: 𝐸𝐸 = 𝛾𝛾(𝑢𝑢)𝑚𝑚𝑐𝑐2, Three-momentum: 𝑝𝑝 = 𝑚𝑚𝑚𝑚(𝑢𝑢)𝑢𝑢�⃗ ,  
Kinetic energy: 𝑇𝑇 ≡ 𝐸𝐸 −𝑚𝑚𝑐𝑐2 = (𝛾𝛾(𝑢𝑢) − 1)𝑚𝑚𝑐𝑐2, 
 𝛽𝛽 = 𝑢𝑢��⃗

𝑐𝑐
= 𝑝⃗𝑝𝑐𝑐/𝐸𝐸 , 𝑢𝑢�⃗ = 𝑝⃗𝑝

𝛾𝛾(𝑢𝑢)𝑚𝑚
= 𝑝⃗𝑝𝑐𝑐2/𝐸𝐸. 

The useful relation: 𝑝𝑝(4) ∙ 𝑝𝑝(4) = −(𝑚𝑚𝑚𝑚)2, 𝐸𝐸2 = (𝑝⃗𝑝𝑐𝑐)2 + (𝑚𝑚𝑐𝑐2)2, 

Relativistic four-momentum:  𝑝𝑝(4) = �

𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
𝐸𝐸/𝑐𝑐

� , 

Lorentz transformation of four-momentum: 𝑝𝑝′(4) = Λ� 𝑝𝑝(4) 
Photon: 𝐸𝐸 = 𝑝𝑝𝑝𝑝 = ℏ𝜔𝜔, 𝜔𝜔 = 𝑘𝑘𝑘𝑘,  𝑝𝑝 = ℏ𝜔𝜔

𝑐𝑐
= ℏ𝑘𝑘, 𝑝𝑝𝛾𝛾

(4) = ℏ �𝑘𝑘�⃗ ,𝜔𝜔
𝑐𝑐
� = ℏ𝜔𝜔

𝑐𝑐
(𝑘𝑘� , 1), 𝑝𝑝𝛾𝛾

(4) ∙ 𝑝𝑝𝛾𝛾
(4) =

0,  
Compton scattering: 𝜆𝜆 − 𝜆𝜆0 = ℎ

𝑚𝑚𝑚𝑚
(1 − cos 𝜃𝜃), 𝜆𝜆𝐶𝐶 = ℎ𝑐𝑐

𝑚𝑚𝑐𝑐2
= 2.43 𝑝𝑝𝑝𝑝 (for electron 

scattering) 

Relativistic four-force: 𝐾𝐾(4) = 𝑑𝑑𝑝𝑝(4)

𝑑𝑑𝑡𝑡0
= 𝛾𝛾 �𝑑𝑑𝑝⃗𝑝

𝑑𝑑𝑑𝑑
, 1
𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝛾𝛾 �𝐹⃗𝐹, 1

𝑐𝑐
𝑢𝑢�⃗ ∙ 𝐹⃗𝐹�  

 
Thermodynamics   

Thermodynamic variables.  Extensive vs. Intensive quantities 
Thermodynamic functions of state (P, V, T, U, S, thermodynamic potentials) have exact 
differentials 
An equation of state relates thermodynamic functions of state 
Ideal gas: 𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇, where 𝑘𝑘𝐵𝐵 = 1.38 × 10−23𝐽𝐽/𝐾𝐾 is Boltzmann’s constant.  𝑈𝑈 =
3
2
𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇.   

Heat is thermal energy in transit.  Heat is not a thermodynamic state function 
Heat capacity 𝐶𝐶 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, specific heat 𝑐𝑐 = 𝐶𝐶/𝑀𝑀.  𝐶𝐶𝑉𝑉 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑|𝑉𝑉, 𝐶𝐶𝑃𝑃 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑|𝑃𝑃,   
𝐶𝐶𝑃𝑃
𝐶𝐶𝑉𝑉

= 𝛾𝛾 the adiabatic index.   
Heat and work are not thermodynamic state functions.   
Inexact differentials ð𝑊𝑊 = −𝑃𝑃𝑃𝑃𝑃𝑃, ð𝑄𝑄 = 𝑇𝑇𝑇𝑇𝑇𝑇.   
Work done on a gas ð𝑊𝑊 = −𝑃𝑃𝑃𝑃𝑃𝑃.   
Zeroth Law of Thermodynamics – Thermal equilibrium 
First law of thermodynamics ∆𝑈𝑈 = ∆𝑊𝑊 + ∆𝑄𝑄, or 𝑑𝑑𝑑𝑑 = ð𝑊𝑊 + ð𝑄𝑄.   
Reversible vs. irreversible processes 
Isothermal, adiabatic, isochoric, isobaric processes 
Heat engine: A machine that produces work from a temperature difference between two 
reservoirs 
Carnot cycle (isothermal and adiabatic processes) 
Carnot efficiency: 𝜂𝜂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑊𝑊

𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻
= 1 − 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻
.   

Carnot cycle: 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻
𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻

= |𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|
𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

, and ∮ ð𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

= 0, leading to 𝑑𝑑𝑑𝑑 = ð𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

.  2nd Law of 
Thermodynamics: ∆𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ≥ 0.  
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Kelvin statement of the 2nd law: No process is possible whose sole result is the complete 
conversion of heat into work. 
Clausius statement of the 2nd law: No process is possible whose sole result is the transfer 
of heat from a colder to a hotter system. 
Otto cycle – internal combustion engine 
Refrigerator 
 
Re-statement of the 1st-law: 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑃𝑃𝑃𝑃𝑃𝑃.   
Thermodynamic potentials: Enthalpy: 𝐻𝐻 = 𝑈𝑈 + 𝑃𝑃𝑃𝑃; 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑉𝑉𝑉𝑉.  Helmholtz 
Function: 𝐹𝐹 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇; 𝑑𝑑𝑑𝑑 = −𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑆𝑆𝑆𝑆𝑆𝑆.  Gibbs Function: 𝐺𝐺 = 𝑈𝑈 + 𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑇𝑇; 
𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉.   

 
Constraints Minimized Potential 
Fixed V, T Helmholtz Function 𝐹𝐹 = 𝑈𝑈 − 𝑇𝑇𝑇𝑇 
Thermally isolated, Fixed V Entropy 𝑆𝑆 
Fixed T, P Gibbs Function 𝐺𝐺 = 𝑈𝑈 + 𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑇𝑇 
Thermally isolated, fixed P Enthalpy 𝐻𝐻 = 𝑈𝑈 + 𝑃𝑃𝑃𝑃 

 
Phase transitions: Latent Heat: 𝐿𝐿 = 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�.  The order of a phase 
transition is the order of the lowest differential of 𝐺𝐺 that shows a discontinuity at 𝑇𝑇𝑐𝑐 
van der Waals equation of state: [𝑃𝑃 + (𝑁𝑁2/𝑉𝑉2)𝑎𝑎][𝑉𝑉 − 𝑁𝑁𝑁𝑁] = 𝑁𝑁𝑘𝑘𝐵𝐵𝑇𝑇. Accounts for 
excluded volume and attractive forces between molecules. 𝑃𝑃𝑐𝑐 = 𝑎𝑎

27𝑏𝑏2
; 𝑉𝑉𝑐𝑐 = 3𝑁𝑁𝑁𝑁; 𝑇𝑇𝑐𝑐 =

8𝑎𝑎
27𝑏𝑏

, so �𝑃𝑃
𝑃𝑃𝑐𝑐

+ 3 �𝑉𝑉𝑐𝑐
𝑉𝑉
�
2
� �𝑉𝑉

𝑉𝑉𝑐𝑐
− 1

2
� = 8

3
𝑇𝑇
𝑇𝑇𝑐𝑐

, the “law of corresponding states” 

Isothermal compressibility 𝜅𝜅𝑇𝑇 ≡ − 1
𝑉𝑉
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑇𝑇.    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑇𝑇 = 1
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕|𝑇𝑇

.  Maxwell construction to 

define the vapor/liquid co-existence region: 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0 = ∫ 𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿𝐿𝐿𝐿𝐿 =

∫ 𝑉𝑉𝑉𝑉𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿𝐿𝐿𝐿𝐿 .  

 
Quantum Physics   

JJ Thomson charge-to-mass measurement in E, B fields: 𝑞𝑞/𝑚𝑚 = 𝑣𝑣
𝑅𝑅𝑅𝑅

.  Millikan oil droplet 
experiment: revealed the quantization of electric charge. 
Blackbody radiation, Stefan-Boltzmann law: 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜎𝜎𝑇𝑇4, 𝜎𝜎 = 5.6703 × 10−8 𝑊𝑊

𝑚𝑚2𝐾𝐾4
.  

Wien displacement law says that 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 = 2.898 × 10−3𝑚𝑚 − 𝐾𝐾.   
Radiation power per unit area related to the energy density of a blackbody: 𝑅𝑅(𝜆𝜆) =
𝑐𝑐
4
𝜌𝜌(𝜆𝜆).   

Rayleigh-Jeans (classical equipartition argument) law 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇/𝜆𝜆4 leads to the 
‘ultraviolet catastrophe’.   
Planck blackbody radiation (treat the atoms as having discrete energy states, and the light 
as having energy 𝐸𝐸 = ℎ𝑓𝑓): 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋ℎ𝑐𝑐/𝜆𝜆5

𝑒𝑒ℎ𝑐𝑐/𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇−1
, ℎ = 6.626 × 10−34𝐽𝐽 − 𝑠𝑠.  

Photoelectric effect and the concept of light as a particle (photon with 𝐸𝐸 = ℎ𝑓𝑓): ℎ𝑓𝑓 =
𝑒𝑒𝑒𝑒0 + 𝜙𝜙.  Photon collides with one electron and transfers all of its energy, −𝑉𝑉0 is the 
stopping potential. 
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X-ray production by Bremsstrahlung with cutoff 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 1240
𝑉𝑉

 𝑛𝑛𝑛𝑛 (Duane-Hunt Rule), 

explained by Einstein as inverse photoemission with 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = ℎ𝑐𝑐
𝑒𝑒𝑉𝑉

.  Sharp emission lines 
arise from quantized energy levels in the ‘core shells’ of atoms. 
Bragg reflection of x-rays from layers of atoms in crystals: 𝑛𝑛𝑛𝑛 = 2𝑑𝑑 sin 𝜃𝜃, where 
𝑛𝑛 = 1, 2, 3, … , 𝑑𝑑 is the spacing between the parallel layers. 
Rutherford scattering (Phys 410) suggested that positive charge is concentrated in a very 
small volume – the nuclear model of the atom. 
Empirical rule for light emission from hydrogen 1

𝜆𝜆𝑚𝑚𝑚𝑚
= 𝑅𝑅 � 1

𝑚𝑚2 −
1
𝑛𝑛2
�, Rydberg constant 

𝑅𝑅 = 𝑅𝑅𝐻𝐻 = 1.096776 × 107  1
𝑚𝑚

 for Hydrogen.   
Bohr model of the hydrogen atom (assumes stationary states, light comes from transitions 
between stationary states, electron angular momentum in circular orbits is quantized):  
�𝐿𝐿�⃗ � = |𝑟𝑟 × 𝑚𝑚𝑣⃗𝑣| = 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛ℏ, with 𝑛𝑛 = 1, 2, 3, …,   Radius of circular orbits: 𝑟𝑟𝑛𝑛 = 𝑛𝑛2𝑎𝑎0

𝑍𝑍
 

with 𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2

𝑚𝑚𝑒𝑒2
= 0.529 Å,  Total energy of Hydrogen atom: 𝐸𝐸𝑛𝑛 = −𝐸𝐸0

𝑍𝑍2

𝑛𝑛2
, with 

𝐸𝐸0 = 𝑚𝑚𝑐𝑐2�𝑒𝑒2/4𝜋𝜋𝜀𝜀0�
2

 
2 (ℏ𝑐𝑐)2 = 𝑚𝑚𝑐𝑐2 

2 
𝛼𝛼2 = 13.6 𝑒𝑒𝑒𝑒, 𝛼𝛼 = 𝑒𝑒2/4𝜋𝜋𝜀𝜀0

ℏ𝑐𝑐
≅ 1

137
 is called the ‘fine structure 

constant’.  Explains the Hydrogen atom emission spectrum but not multi-electron atoms. 
Davisson-Germer experiment shows that matter (electrons) diffract from periodic 
structures (Ni atoms on a surface) like waves.  It is clear that matter has a strong wave-
like character when measured under appropriate conditions. 
deBroglie proposed the wavelength of matter waves as 𝜆𝜆𝑑𝑑𝑑𝑑 = ℎ/𝑝𝑝, where 𝑝𝑝 is the linear 
momentum.  Classical physics should be recovered in the short-𝜆𝜆𝑑𝑑𝑑𝑑 limit – the 
Correspondence Principle 
The time-dependent Schrodinger equation: − ℏ2

2𝑚𝑚
𝜕𝜕2Ψ(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 𝑉𝑉(𝑥𝑥, 𝑡𝑡)Ψ(𝑥𝑥, 𝑡𝑡) = 𝑖𝑖ℏ 𝜕𝜕Ψ(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝜕𝜕

;  
Separation of variables leads to Ψ(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/ℏ (a property of stationary states); 
Time-independent Schrodinger equation:  − ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 𝑉𝑉(𝑥𝑥) 𝜓𝜓(𝑥𝑥) = 𝐸𝐸𝐸𝐸(𝑥𝑥);  
The wavefunction Ψ(𝑥𝑥, 𝑡𝑡) is complex in general and cannot be measured.  Born 
interpretation of the wave function in terms of a probability density 𝑃𝑃(𝑥𝑥, 𝑡𝑡) =
Ψ∗(𝑥𝑥, 𝑡𝑡)Ψ(𝑥𝑥, 𝑡𝑡);   
Normalization condition: ∫ |𝜓𝜓(𝑥𝑥)|2+∞

−∞ 𝑑𝑑𝑑𝑑 = 1.   

Particle of mass 𝑚𝑚 in an infinite square well between 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿: 𝐸𝐸𝑛𝑛 = ℏ2𝑘𝑘𝑛𝑛2

2𝑚𝑚
=

𝑛𝑛2 𝜋𝜋2ℏ2

2𝑚𝑚𝐿𝐿2
 with 𝑛𝑛 = 1, 2, 3, …, and 𝜓𝜓𝑛𝑛(𝑥𝑥) = �2/𝐿𝐿  sin𝑘𝑘𝑛𝑛𝑥𝑥.   

Finite square well of height 𝑉𝑉0, energy eigenvalues are solutions of the transcendental 

equation: tan �√2𝑚𝑚𝑚𝑚
ℏ

𝑎𝑎� = �𝑉𝑉0−𝐸𝐸
𝐸𝐸

 (even parity solutions).  Always at least one solution! 

Harmonic oscillator: − ℏ2

2𝑚𝑚
𝑑𝑑2𝜓𝜓(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 1
2
𝑚𝑚𝜔𝜔2𝑥𝑥2𝜓𝜓(𝑥𝑥)  = 𝐸𝐸𝐸𝐸(𝑥𝑥), 𝐸𝐸𝑛𝑛 = �𝑛𝑛 + 1

2
� ℏ𝜔𝜔, where 

𝑛𝑛 = 0, 1, 2, 3, …,  Eigenfunctions: 𝜓𝜓𝑛𝑛(𝑥𝑥) = 𝐶𝐶𝑛𝑛 𝑒𝑒−𝑚𝑚𝜔𝜔2𝑥𝑥2/2ℏ 𝐻𝐻𝑛𝑛(𝑥𝑥), involve the Hermite 
polynomials multiplying a Gaussian in 𝑥𝑥.   
Classical turning points are inflection points in 𝜓𝜓(𝑥𝑥).   
General wave uncertainty properties: (∆𝑥𝑥) (∆𝑘𝑘) ≥ 1/2, (∆𝑡𝑡) (∆𝜔𝜔) ≥ 1/2.   
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Quantum uncertainty properties: (∆𝑥𝑥) (∆𝑝𝑝) ≥ ℏ/2, (∆𝑡𝑡) (∆𝐸𝐸) ≥ ℏ/2. 
Expectation values: 〈𝑥𝑥〉 = ∫ Ψ∗(𝑥𝑥, 𝑡𝑡) 𝑥𝑥 Ψ(𝑥𝑥, 𝑡𝑡)∞

−∞  𝑑𝑑𝑑𝑑 , and for any function of position: 
〈𝑓𝑓(𝑥𝑥)〉 = ∫ Ψ∗(𝑥𝑥, 𝑡𝑡) 𝑓𝑓(𝑥𝑥) Ψ(𝑥𝑥, 𝑡𝑡)∞

−∞  𝑑𝑑𝑑𝑑 

Linear momentum operator: 𝑝𝑝𝑜𝑜𝑜𝑜 = −𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

 , Hamiltonian operator: ℋ𝑜𝑜𝑜𝑜 = 𝑝𝑝𝑜𝑜𝑜𝑜2

2𝑚𝑚
+ 𝑉𝑉(𝑥𝑥), 

the time independent Schrodinger equation written as an operator equation: ℋ𝑜𝑜𝑜𝑜ψ(𝑥𝑥) =
𝐸𝐸 ψ(𝑥𝑥). 

Step potential 𝑉𝑉(𝑥𝑥) = � 0    for  𝑥𝑥 < 0
𝑉𝑉0    for  𝑥𝑥 > 0 has reflection rate 𝑅𝑅 = �𝑘𝑘1−𝑘𝑘2

𝑘𝑘1+𝑘𝑘2
�
2
, and transmission 

rate 𝑇𝑇 = 4 𝑘𝑘1 𝑘𝑘2
(𝑘𝑘1+𝑘𝑘2)2, where 𝑘𝑘1 = √2𝑚𝑚𝑚𝑚/ℏ and 𝑘𝑘2 = �2𝑚𝑚(𝐸𝐸 − 𝑉𝑉0)/ℏ. 

Tunneling rate through a barrier 𝑇𝑇 = �1 + sinh2(𝛼𝛼𝛼𝛼)

4 𝐸𝐸𝑉𝑉0
 �1− 𝐸𝐸𝑉𝑉0

�
�
−1

≈ 16  𝐸𝐸
𝑉𝑉0

 �1 −  𝐸𝐸
𝑉𝑉0
� 𝑒𝑒−2𝛼𝛼𝛼𝛼, where 

 𝑎𝑎 is the barrier width, and  𝛼𝛼 = �2𝑚𝑚(𝑉𝑉0 − 𝐸𝐸)/ℏ. 
 
 
 


